EnergiPanas adalah energi yang terjadi karena pergerakan internal partikel penyusun dalam suatu benda. Energi panas merupakan energi yang berpindah dari suatu partikel yang bersuhu tinggi ke partikel bersuhu lebih rendah. Contohnya ketika memanaskan air dengan api, suhu dari api akan berpindah ke air sehingga membuat air dapat mendidih.
Pengertian FotonFoton adalah kuanta cahaya, atau partikel dasar yang mentransmisikan gelombang elektromagnetik cahaya. Cahaya yang terlihat merupakan contoh foton yang sangat bagus. Beberapa nilai fisik, termasuk panjang gelombang dan frekuensi diukur dalam hertz, atau Hz, yang menandai foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel “dualisme gelombang-partikel“.Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama FotonSebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah,di mana adalah konstanta Planck, adalah laju cahaya, dan adalah panjang energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan Menghitung Energi FotonAnda dapat menghitung energi foton, berdasarkan frekuensi atau panjang gelombang, dengan bantuan konstanta fisik mendasar tertentu. Catat nilai konstanta fisik yang diperlukan untuk perhitungan perhitungan energi. Dalam hal ini, mereka adalahKecepatan cahaya c = 299,792,458 m / sKonstanta planck h = 4,13566766225×10−15 atau 4,13566766225 E-15Perhatikan bahwa elektron volt eV adalah satuan yang biasa digunakan untuk mengekspresikan energi kecepatan cahaya dan konstanta Planck, dan bagi hasil kalinya dengan panjang gelombang untuk menghitung energi foton. Misalnya, foton cahaya tampak kuning memiliki panjang gelombang sekitar 580 nm atau 5,8E-7 m. Dengan demikian, energinya adalah m / s x eV s / m = bahwa awalan “nano” n menunjukkan 10 pangkat lain adalah dengan mengalikan frekuensi foton dan konstanta Planck untuk menghitung energi foton. Misalnya, frekuensi foton yang sesuai dengan sinar ultraviolet UV adalah Hz atau 780 Thz; energi foton adalah Hz x eV s = 3,23 bahwa awalan “tera” T berarti 10 pangkat 12 ayau energi dalam eV dengan faktor untuk menghitungnya dalam joule J, jika perlu. Misalnya, energi 3,23 eV akan dikonversi menjadi yang dipancarkan dalam berkas koheren laser. Sumber foto Wikimedia CommonsKonsep Modern FotonKonsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi; dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi awalnya dinamakan sebagai kuantum cahaya das Lichtquant oleh Albert Einstein. Nama modern “photon” berasal dari kata Bahasa Yunani untuk cahaya φ, ditransliterasi sebagai phôs, dan ditelurkan oleh kimiawan fisik Gilbert N. Lewis, yang menerbitkan teori spekulatif yang menyebutkan foton sebagai “tidak dapat diciptakan atau dimusnahkan”. Meskipun teori Lewis ini tidak dapat diterima karena bertentangan dengan hasil banyak percobaan, nama barunya ini, photon, segera diadopsi oleh kebanyakan fisikawan. Isaac Asimov menyebut Arthur Compton sebagai orang yang pertama kali mendefinisikan kuantum cahaya sebagai foton pada tahun fisika, foton biasanya dilambangkan oleh simbol γ abjad Yunani gamma. Simbol ini kemungkinan berasal dari sinar gamma, yang ditemukan dan dinamakan oleh Villard, dan dibuktikan sebagai salah satu bentuk radiasi elektromagnetik pada 1914 oleh Ernest Rutherford dan Edward kimia dan rekayasa optik, foton biasanya dilambangkan oleh , energi foton, adalah konstanta Planck dan abjad Yunani adalah frekuensi foton. Agak jarang ditemukan adalah foton disimbolkan sebagai hf, fdi sini melambangkan Fisik FotonFoton tidak bermassa, tidak memiliki muatan listrik, dan tidak meluruh secara spontan di ruang hampa. Sebuah foton memiliki dua keadaan polarisasi yang dimungkinkan, dan dapat dideskripsikan dengn tiga parameter kontinu komponen-komponen vektor gelombang, yang menentukan panjang gelombangnya dan arah perambatannya. Foton adalah boson gauge untuk elektromagnetisme, dan sebab itu semua bilangan kuantum lainnya seperti bilangan lepton, bilangan baryon atau strangeness bernilai persis diemisikan dalam banyak proses alamiah, contohnya ketika muatan dipercepat, saat transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih rendah, atau ketika sebuah partikel dan antipartikel bertumbukan dan saling memusnahkan. Foton diserap dalam proses dengan waktu mundur time-reversed yang berkaitan dengan yang sudah disebut di atas contohnya dalam produksi pasangan partikel-antipartikel, atau dalam transisi molekuler, atomik atau nuklir ke tingkat energi yang lebih ruang hampa foton bergerak dengan laju laju cahaya. Energinya dan momentum dihubungkan dalam persamaan , di mana merupakan nilai momentum. Sebagai perbandingan, persamaan terkait untuk partikel dengan massa adalah , sesuai dengan teori relativitas Soal dan Jawaban FotonSoal Fisika Teori Kuantum Planck SMA XII. Contoh Soal dan Pembahasan tentang Teori Kuantum Planck, Materi Fisika kelas 3 XII SMA, dengan kata kunci daya, intensitas, kuanta energi dan jumlah foton. Selihakan dipelajari dan selamat MinimalEnergi Foton E = hf E = h c/λ Energi Foton Sejumlah n E = nhf E = nh c/λ Konversi 1 elektron volt = 1 eV = 1,6 x 10−19 joule 1 angstrom = 1 Å = 10−10 meter 1 nanometer = 1 nm = 10−9 meter Daya → Energi tiap sekon Intensitas → Energi tiap sekon persatuan luas Contoh Soal dan Pembahasan Teori Kuantum Plank1. Tentukan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6600 Å jika kecepatan cahaya adalah 3 x 108 m/s dan tetapan Planck adalah 6,6 x 10−34 Js !PembahasanE = hc/λ E = 6,6 x 10−34 3 x 108/6600 x 10−10 = 3 x 10−19 joule2. Bola lampu mempunyai spesifikasi 132 W/220 V, ketika dinyalakan pada sumber tegangan 110 V memancarkan cahaya dengan panjang gelombang 628 nm. Bila lampu meradiasikan secara seragam ke segala arah, maka jumlah foton yang tiba persatuan waktu persatuan luas di tempat yang berjarak 2,5 m dari lampu adalah … h =6, J s A 5,33 . 1018 m−2 B 4,33 . 1018 m−2 C 3,33 . 1018 m−2 D 2,33 . 1018 m−2 E 1,33 . 1018 m−2Pembahasan Daya Lampu yang memiliki spesifikasi 132 W/220 V saat dipasang pada tegangan 110 V dayanya akan turun menjadi P2 =V2/V12 x P1 P2 =110/2202 x 132 watt = 33 wattIntensitas daya persatuan luas pada jarak 2,5 meter I = P/A dengan A adalah luas permukaan, anggap berbentuk bola luas bola empat kali luas lingkaran. I = P/4π r2 I = 33/4π 2,52 = 0,42 watt/m2 0,42 watt/m2 → Energi tiap sekon persatuan luas adalah 0,42 foton n n = 0,42 hc/λ = [ 0,42 ] [ 6,6 x 10−34 3 x 108 / 628 x 10−9 ] = 0,42 3,15 x 10−19 n = 1,33 x 1018 foton3. Panjang gelombang cahaya yang dipancarkan oleh lampu monokromatis 100 watt adalah 5, m. Cacah foton partikel cahaya per sekon yang dipancarkan sekitar….A. 2,8 x 1022 /s B. 2,0 x 1022 /s C. 2,6 x 1020 /s D. 2,8 x 1020 /s E. 2,0 x 1020 /sPembahasan Data P = 100 watt → Energi yang dipancarkan tiap sekon adalah 100 1 foton E = hc/λ E = 6,6 x 10−34 3 x 108/5,5 x 10−7 jouleJumlah foton n n = 100 joule [ 6,6 x 10−34 3 x 108/5,5 x 10−7 joule] = 2,8 x 1020 Intensitas radiasi yang diterima pada dinding dari tungku pemanas ruangan adalah 66,3 Jika tungku ruangan dianggap benda hitam dan radiasi gelombang elektromagnetik pada panjang gelombang 600 nm, maka jumlah foton yang mengenai dinding persatuan luas persatuan waktu adalah ….h = 6,63 x10− 34 c = 3 x 108 1A. 1 x 1019 foton B. 2 x 1019 foton C. 2 x 1020 foton D. 5 x 1020 foton E. 5 x 1021 fotonPembahasan Data I = 66,3 → Energi yang diterima tiap sekon tiap meter persegi adalah 66,3 1 foton E = hc/λ E = 6,63 x 10−34 3 x 108/600 x 10−9 jouleJumlah foton tiap sekon tiap satuan luas adalah n = 66,3 joule [ 6,63 x 10−34 3 x 108/600 x 10−9 joule] = 2 x 1020 foton5. Tentukan perbandingan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6000 Å dan sinar dengan panjang gelombang 4000 Å !PemnahasanData λ1 = 6000 Å λ2 = 4000 ÅE = hc/λ E1/E2 = λ2 λ1 = 4000 6000 = 2 36. Energi foton sinar gamma adalah 108 eV. Jika h = 6,6 x 10−34 Js dan c = 3 x 108 m/s, tentukan panjang gelombang sinar gamma tersebut dalam satuan angstrom!PemhasanData E = 108 eV = 108 x 1,6 x 10−19 joule = 1,6 x 10−11 joule h = 6,6 x 10−34 Js c = 3 x 108 m/s λ = …?λ = hc / E λ = 6,6 x 10−343 x 108 / 1,6 x 10−11 λ = 12,375 x 10−15 meter =12,375 x 10−15 x 1010 Å = 12,375 x 10−5 ÅBacaan LainnyaRumus Gerak Fisika – Gerak Lurus Beraturan, Gerak Lurus Berubah Beraturan, Melingkar, Parabola – Beserta Soal dan JawabanJenis, Kelas, Klasifikasi – Panjang Gelombang Sinar LaserCara Buat Jeans Belel – 10 Cara Mudah Pasti BerhasilKutipan Quote Terkenal – Kata Bijak, Kata MutiaraCara Menganalisa Saham Seperti Ahli Pasar Saham ProfesionalPasar Keuangan – Definisi, Pengertian, Jenis dan ContohUang Rupiah Negara Indonesia – Sejarah Nilai Tukar Rupiah Terhadap USDTempat Wisata Yang Harus Dikunjungi Di Tokyo – Top 10 Obyek Wisata Yang Harus Anda KunjungiCara Membeli Tiket Pesawat Murah Secara Online Untuk Liburan Atau BisnisTibet Adalah Provinsi Cina – Sejarah Dan BudayaPuncak Gunung Tertinggi Di Dunia dimana?TOP 10 Gempa Bumi Terdahsyat Di DuniaApakah Matahari Berputar Mengelilingi Pada Dirinya Sendiri?Test IPA Planet Apa Yang Terdekat Dengan Matahari?10 Cara Belajar Pintar, Efektif, Cepat Dan Mudah Di Ingat – Untuk Ulangan & Ujian Pasti Sukses!TOP 10 Virus Paling Mematikan ManusiaUnduh / Download Aplikasi HP Pinter PandaiRespons “Ooo begitu ya…” akan lebih sering terdengar jika Anda mengunduh aplikasi kita!Siapa bilang mau pintar harus bayar? Aplikasi Ilmu pengetahuan dan informasi yang membuat Anda menjadi lebih smart!HP AndroidHP iOS AppleSumber bacaan StudyPinter Pandai “Bersama-Sama Berbagi Ilmu” Quiz Matematika IPA Geografi & Sejarah Info Unik Lainnya Business & Marketing
Suatupartikel yang mempunyai massa m dan bergerak dengan kecepatan v, maka akan mempunyai momentum sebesar p. Dasar dari mekanika kuantum adalah bahwa energi itu tidak kontinyu, tapi diskrit berupa 'paket' atau 'kuanta'. Konsep ini revolusioner bertentangan dengan fisika klasik yang berasumsi bahwa energi itu berkesinambungan.
Sebuah partikel & foton memiliki energi yg sama apabila ?manakah yg mempunyai energi yg lebih besar sebuah foton radiasi UltraViolet atau sebuah foton cahaya kuningsuatu partikel & foton memiliki energi yg sama apabilaSebuah partikel & foton memiliki energi yg sama apabilaSebuah elektron & suatu foton mempunyai panjang gelombang yg sama. Pernyataan yg sesuai dgn kondisi tersebut adalah …. a. energi elektron lebih besar ketimbang energi foton b momentum elektron sama dgn saat-saat foton c momentum elektron lebih besar dibandingkan dengan momentum foton d energi elektron lebih kecil ketimbang energi foton e momentum elektron lebih kecil daripada saat-saat foton tak mempunyai besaran yg sama atau variabel manakah yg mempunyai energi yg lebih besar sebuah foton radiasi UltraViolet atau sebuah foton cahaya kuning radiasi Ultraviolet….. suatu partikel & foton memiliki energi yg sama apabila tak memiliki satu variabel atau besaran yg sama Sebuah partikel & foton memiliki energi yg sama apabila Partikel & foton memiliki energi yg sama tatkala momentumnya sama, sesuai rumusanE = hf = hC/A = pc Sebuah elektron & suatu foton mempunyai panjang gelombang yg sama. Pernyataan yg sesuai dgn kondisi tersebut adalah …. a. energi elektron lebih besar ketimbang energi foton b momentum elektron sama dgn saat-saat foton c momentum elektron lebih besar dibandingkan dengan momentum foton d energi elektron lebih kecil ketimbang energi foton e momentum elektron lebih kecil daripada saat-saat foton elektron sama dgn momentum foton
Energiyang terkuantisasi setiap diskretnya disebut foton. Foton adalah bentuk cahaya sebagai partikel yang memiliki kecepatan. nilai kecepatan cahaya di ruang hampa selalu konstan, yakni c = 3 x 10 8 m/s. Energi yang dibawa tiap satuan foton bergantung pada frekuensinya. Dapat dirumuskan: dengan. maka. E = energi setiap foton (J)
Foton adalah partikel tak bermassa yang tidak menunjukkan massa tetapi membawa energi sedangkan elektron adalah partikel bermuatan negatif yang memiliki massa. Mari kita bahas apakah foton merupakan foton dihasilkan saat elektron memancarkan energi saat berpindah dari tingkat energi yang lebih tinggi ke tingkat energi yang lebih rendah yang memberikan energi dalam bentuk foton, foton bukanlah elektron tetapi dapat memberikan energi ke foton menjadi elektron?Sebuah foton pasti tidak dapat menjadi elektron tetapi dapat memberikan energi kepada elektron untuk melompat dari tingkat energi yang lebih rendah ke tingkat energi yang lebih energi foton lebih besar dari energi ionisasi atom maka foton yang datang dapat memutuskan gaya tarik menarik antara elektron dan inti atom dengan melepaskan elektron secara elektron dari atom menghasilkan ion dan karenanya disebut proses ionisasi. Foton hanya memberikan energi pada elektron yang terlepas ini tetapi tidak benar bahwa foton diubah menjadi elektron terbuat dari foton?Dikatakan bahwa foton frekuensi tinggi muncul ke dalam pembentukan elektron dan plasma quark dan gluon selama Big yang menghasilkan medan elektromagnetik memancarkan foton memberikan energi yang diperoleh oleh medan. Foton dibuat oleh energi elektron. Saat elektron menerima energi, mereka menunjukkan transisi elektronik yang memancarkan energi di alam semesta terlihat karena foton bergerak dalam gelombang elektromagnetik yang membawa paket energi. Hal ini disebabkan oleh reaksi fisi dan fusi yang terlihat oleh foton lebih kecil dari elektron?Massa diam sebuah foton adalah nol tetapi bergerak dengan kecepatan sama dengan kecepatan cahaya sedangkan massa diam elektron adalah 10-31kFoton adalah partikel tak bermassa yang bergerak dengan kecepatan tinggi dan sebaliknya, kecepatan elektron lebih rendah dibandingkan dengan foton yang merambat dengan energi gelombang de Broglie dari foton adalahPanjang gelombang D'Broglie dari elektron jika kecepatannya kira-kira makaPanjang gelombang elektron berbeda berdasarkan konfigurasi atom dan energi yang diperoleh elektron. Semakin besar ukuran atom, semakin kecil panjang bahwa panjang gelombang elektron lebih kecil dari foton. Hal ini disebabkan oleh fakta bahwa elektron lebih besar dari foton dipancarkan dari elektron?Elektron juga bereaksi dengan partikel quark untuk menghasilkan proton dan neutronSebuah foton dilepaskan oleh elektron saat ia melompat dari tingkat energi yang lebih tinggi ke tingkat energi yang lebih rendah, memberikan energinya ke foton yang gelombang foton yang dipancarkan dihitung menggunakan rumusdi mana R adalah konstanta Rydberg, Z adalah nomor atom. dan N1 dan N2 adalah bilangan orbital tempat terjadinya elektron bebas memancarkan foton?Sebuah elektron bebas dapat memancarkan foton jika elektron menyerap energi dalam beberapa ini dapat berikatan dengan partikel lain karena bergerak acak bebas dan dapat memancarkan foton. Setelah bereaksi dengan beberapa partikel berenergi lainnya, ia menerima energi ekstra yang dipancarkan dalam bentuk foton benar-benar terikat dengan elektron bebas maka kecepatan elektron dapat menjadi sama dengan kecepatan Foton dan ElektronSebuah foton memiliki 'p' dan 'E' dan jika bereaksi dengan elektron kita mendapatkan efek hamburan Compton. Ketika foton dengan panjang gelombang datang pada elektron, sebagian energinya diberikan kepada elektron dan dihamburkan kembali dengan energi rendah sehingga meningkatkan panjang gelombangnya..Hamburan ComptonIni adalah jenis hamburan tidak elastis karena panjang gelombang datangnya cahaya berbeda dari cahaya yang dihamburkan dan juga energinya berkurang. Perubahan panjang gelombang ini diberikan oleh persamaandi mana adalah sudut yang dibuat oleh partikel yang interaksi elektron foton juga dapat dilihat pada efek fotolistrik. Efek ini terjadi ketika foton berenergi tinggi dibuat mengenai gugus elektron memperoleh energi lebih besar dari ikatannya energi maka ia akan melepaskannya dari kulit bagian dalam atom. Ini sekarang disebut fotoelektrik; Kredit Gambar WikipediaEnergi kinetik yang diperoleh fotoelektron yang dipancarkan sama dengan energi foton dikurangi energi ikat elektron yang dipancarkan. Emisi elektron dari kulit bagian dalam atom menciptakan ruang kosong di kulit yang diisi oleh elektron di kulit elektron dari orbit energi yang lebih tinggi ke energi yang lebih rendah menyiratkan bahwa energi elektron harus dikurangi dan energi ini dipancarkan memberikan foton yang menghasilkan Foton dan ElektronFoton adalah kuanta energi tak bermassa, massa diamnya nol sedangkan elektron bermassa. Foton bergerak dengan kecepatan cahaya sementara elektron tidak mungkin bergerak dengan kecepatan tidak bermuatan sedangkan elektron yang kita kenal bermuatan negatif. Foton menunjukkan lebih banyak karakter gelombang sedangkan elektron menunjukkan lebih banyak sifat adalah paket energi dan memperoleh massa yang sama dengan E/c2 karena bergerak dengan kecepatan cahaya dan memiliki energi dan momentum. Energi foton diubah menjadi massa saat merambat dengan kecepatan cahaya, oleh karena itu ditemukan bahwa foton juga menunjukkan perilaku Gelombang Foton dan ElektronKecepatan partikel berbanding lurus dengan panjang gelombang dengan persamaan, v = fλ sesuai panjang gelombang foton harus lebih dari foton dan elektron keduanya memiliki energi 1ev maka berapakah perbedaan panjang gelombang keduanya, mari kita hitung dan pahami bergerak dengan kecepatan cahaya maka energi foton dapat diukur menggunakan persamaan,E=pc karena energi foton hanya disebabkan oleh istilah kita dapat menulis,Dimana h adalah konstanta Planck, c adalah kecepatan, danp adalah panjang gelombang karena itu, berdasarkan ini kita dapat mengukur panjang gelombang foton sebagaiSekarang mari kita cari panjang gelombang elektron dengan energi elektron adalahKarena panjang gelombang elektron dapat ditemukan menggunakan rumusOleh karena itu dapat disimpulkan bahwa panjang gelombang foton lebih besar daripada panjang gelombang dan Massa ElektronFoton meskipun memiliki momentum itu adalah kuanta energi tak bermassa. Sesuai teori relativistik, energi yang dimiliki foton adalah E = pc karena momentum dan ketika bergerak, massa foton setara dengan E/c2Massa elektron berubah ketika bergerak menggunakan energi kinetik. Massa relativistik elektron yang bergerak adalahdimanaMassa elektron dihitung menggunakan konstanta Rydbergdi mana adalah konstanta struktur halus yang diukur dari spektroskopiJadi kita mendapatkan massa diam elektron menggunakan persamaan iniditemukan Foton dan ElektronEnergi dari setiap partikel secara langsung berhubungan dengan frekuensi kemunculannya dan diberikan olehE=hγDimana h adalah konstanta Planck dan adalah frekuensi.=v/λKarena, kecepatan foton sama dengan c, makaE=h/cλTergantung pada panjang gelombang cahaya, kita dapat menentukan energi yang terkait dengan foton yang memancarkan elektron bervariasi tergantung pada energi yang ditangkap oleh elektron untuk melakukan transisi ke tingkat energi yang lebih tinggi atau energi total diberikan untuk menempati keadaan energi yang lebih rendah daripada yang partikel adalah kekal dan energi elektron dapat dihitung dengan menggunakan rumus E=p2/2m. Saat elektron melompat dari satu tingkat ke tingkat lainnya, energi yang hilang atau diperoleh dapat dihitung dengan mengetahui variasi frekuensi elektron E=hγΔBerapa perbandingan panjang gelombang elektron dan foton?Panjang gelombang elektron adalah e=h/√2m/E sedangkan perbandingan foton adalah h/√2m/ERasio panjang gelombang elektron dan foton sama dengan akar kuadrat energi total dengan dua kali massa elektron kali kebalikan dari kecepatan panjang gelombang elektron yang memiliki energi E= punya,Panjang gelombang elektron adalah adalah paket energi yang bergerak dalam gelombang elektromagnetik sedangkan elektron menunjukkan dualitas di alam dan memiliki massa. Transisi elektron dari tingkat energi yang lebih tinggi ke tingkat energi yang lebih rendah memberikan foton yang membawa energi ekstra yang dipancarkan oleh elektron.
Kristalmemiliki susunan partikel yang teratur dan berulang secara periodik dalam rentang yang panjang. Sedangkan amorf adalah zat padat yang memiliki keteraturan susunan partikel dalam rentang yang pendek. Panjang gelombang minimum datam spectrum bremsstrahlung λm bersesuaian dengan energi maksimum foton yang dipancarkan, yang
Foton adalah partikel elementer dalam fenomena elektromagnetik. Biasanya foton dianggap sebagai pembawa radiasi elektromagnetik, seperti cahaya, gelombang radio, dan Sinar-X. Foton juga dapat diartikan sebagai energi terkuantisasi. Foton berbeda dengan partikel elementer lain seperti elektron dan quark, karena ia tidak bermassa dan dalam ruang vakum foton selalu bergerak dengan kecepatan cahaya, c. Foton memiliki baik sifat gelombang maupun partikel "dualisme gelombang-partikel". Foton yang dipancarkan dalam berkas koheren laser Sebagai gelombang, satu foton tunggal tersebar di seluruh ruang dan menunjukkan fenomena gelombang seperti pembiasan oleh lensa dan interferensi destruktif ketika gelombang terpantulkan saling memusnahkan satu sama lain. Sebagai partikel, foton hanya dapat berinteraksi dengan materi dengan memindahkan energi sejumlah , di mana adalah konstanta Planck, adalah laju cahaya, dan adalah panjang gelombangnya. Selain energi partikel foton juga membawa momentum dan memiliki polarisasi. Foton mematuhi hukum mekanika kuantum, yang berarti kerap kali besaran-besaran tersebut tidak dapat diukur dengan cermat. Biasanya besaran-besaran tersebut didefinisikan sebagai probabilitas mengukur polarisasi, posisi, atau momentum tertentu. Sebagai contoh, meskipun sebuah foton dapat mengeksitasi satu molekul tertentu, sering tidak mungkin meramalkan sebelumnya molekul yang mana yang akan tereksitasi. Deskripsi foton sebagai pembawa radiasi elektromagnetik biasa digunakan oleh para fisikawan. Namun dalam fisika teoretis sebuah foton dapat dianggap sebagai mediator buat segala jenis interaksi elektromagnetik, seperti medan magnet dan gaya tolak-menolak antara muatan sejenis. Konsep modern foton dikembangkan secara berangsur-angsur antara 1905-1917 oleh Albert Einstein[2][3][4][5] untuk menjelaskan pengamatan eksperimental yang tidak memenuhi model klasik untuk cahaya. Model foton khususnya memperhitungkan ketergantungan energi cahaya terhadap frekuensi, dan menjelaskan kemampuan materi dan radiasi elektromagnetik untuk berada dalam kesetimbangan termal. Fisikawan lain mencoba menjelaskan anomali pengamatan ini dengan model semiklasik, yang masih menggunakan persamaan Maxwell untuk mendeskripsikan cahaya. Namun dalam model ini objek material yang mengemisi dan menyerap cahaya dikuantisasi. Meskipun model-model semiklasik ini ikut menyumbang dalam pengembangan mekanika kuantum, percobaan-percobaan lebih lanjut membuktikan hipotesis Einstein bahwa cahaya itu sendirilah yang terkuantisasi. Kuantum cahaya adalah foton. Konsep foton telah membawa kemajuan berarti dalam fisika teoretis dan eksperimental, seperti laser, kondensasi Bose-Einstein, teori medan kuantum dan interpretasi probabilistik dari mekanika kuantum. Menurut model standar fisika partikel, foton bertanggung jawab dalam memproduksi semua medan listrik dan medan magnet dan foton sendiri merupakan hasil persyaratan bahwa hukum-hukum fisika memiliki kesetangkupan pada tiap titik pada ruang-waktu. Sifat-sifat intrinsik foton seperti muatan listrik, massa dan spin ditentukan dari kesetangkupan gauge ini. Konsep foton diterapkan dalam banyak area seperti fotokimia, mikroskopi resolusi tinggi dan pengukuran jarak molekuler. Baru-baru ini foton dipelajari sebagai unsur komputer kuantum dan untuk aplikasi canggih dalam komunikasi optik seperti kriptografi kuantum. Energidan frekuensi suatu foton akan berbanding terbalik dengan Vis, UV-Vis dan Ir) memiliki prinsip kerja yang sama yaitu “adanya interaksi antara materi dengan cahaya yang memiliki panjang gelombang tertentu”. Perbedaannya terjadi hamburan cahaya oleh partikel-partikel koloid atau suspensi yang ada di dalam larutan. 5
PertanyaanJika energi sebuah foton adalah E, pernyataan yang tepat untuk panjang gelombang λ dari foton dinyatakan dalam energi E, konstanta Planck h, dan cepat rambat cahaya c adalah . . . .Jika energi sebuah foton adalah E, pernyataan yang tepat untuk panjang gelombang dari foton dinyatakan dalam energi E, konstanta Planck h, dan cepat rambat cahaya c adalah . . . .AAA. AcfreelanceMaster TeacherPembahasanUntuk menjawab soal ini, kalian harus memahami hubungan panjang gelombang dengan energi foton yang dipancarkan. Hubungan ini dinyatakan dalam suatu teori yang dikemukakan oleh Max Planck. Menurut teori kuantum Planck, energi yang dibawa oleh sebuah foton berbanding terbalik dengan panjang gelombang, berbanding lurus dengan cepat rambat cahaya di ruang hampa, dan berbanding lurus dengan konstanta Planck. Dari sini diperoleh sebuah persamaan, yaitu Dengan kata lain Untuk menjawab soal ini, kalian harus memahami hubungan panjang gelombang dengan energi foton yang dipancarkan. Hubungan ini dinyatakan dalam suatu teori yang dikemukakan oleh Max Planck. Menurut teori kuantum Planck, energi yang dibawa oleh sebuah foton berbanding terbalik dengan panjang gelombang, berbanding lurus dengan cepat rambat cahaya di ruang hampa, dan berbanding lurus dengan konstanta Planck. Dari sini diperoleh sebuah persamaan, yaitu Dengan kata lain Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!PNPuspa Ningrum Pembahasan lengkap banget Ini yang aku cari! Mudah dimengerti Bantu bangetLALuisiana Artika putri Pembahasan lengkap banget
3 Mekanika (Kinematika dan Dinamika) 4. Fisika Optik. 5. Suhu dan Kalor. Dalam artikel sebelumnya telah dijelaskan bahwa cahaya merupakan suatu gelombang elektromagnetik atau partikel foton yang dipancarkan oleh benda-benda yang mampu bersinar seperti matahari dan lampu pijar listrik sehingga memungkinkan mata kita dapat menangkap bayangan

0% found this document useful 0 votes1K views33 pagesDescriptionsoal-soal ini meliputi radiasi benda hitam, fisika atom, fisika inti dan relativitas khususOriginal TitleKumpulan soal UN fisika tentang Fisika ModernCopyright© © All Rights ReservedShare this documentDid you find this document useful?0% found this document useful 0 votes1K views33 pagesKumpulan Soal UN Fisika Tentang Fisika ModernOriginal TitleKumpulan soal UN fisika tentang Fisika ModernDescriptionsoal-soal ini meliputi radiasi benda hitam, fisika atom, fisika inti dan relativitas khususFull descriptionJump to Page You are on page 1of 33 You're Reading a Free Preview Pages 7 to 14 are not shown in this preview. You're Reading a Free Preview Pages 18 to 27 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.

Jikasebuah lampu pijar 100 watt dan 5 watt dinyalakan secara bersama-sama selama selang waktu tertentu. Lampu 100 watt menyerap 100 joule energi listrik setiap detik, sedangkan lampu 5 watt menyerap 5 joule energi listrik setiap detik. Berarti energi yang digunakan lampu 100 watt lebih besar daripada lampu 5 watt.
Fotonkomposisi: partikel dasar kelompok: gauge boson interaksi: elektromagnetik, interaksi lemah, gravitasi simbol: γ penggagas: albert einstein massa: 0< 1×10−18 ev/c2 [1] jangka hidup: stabil[1] muatan listrik: 0< 1×10−35 e[1] spin: 1 foton yang dipancarkan dalam berkas koheren laser foton adalah partikel elementer dalam fenomena elektromagnetik. biasanya foton PORKASPOKERmenyediakan permainan taruhan kartu seperti Judi Poker,Judi Domino, Judi Ceme,Judi Ceme Keliling, Judi Capsa Susun, dan Judi Terbaru LIVE POKER dengan sistem permainan Pemain lawan Pemain tanpa adanya campur tangan dari admin ataupun BOT. .
  • brm7sfv6ov.pages.dev/774
  • brm7sfv6ov.pages.dev/818
  • brm7sfv6ov.pages.dev/388
  • brm7sfv6ov.pages.dev/53
  • brm7sfv6ov.pages.dev/578
  • brm7sfv6ov.pages.dev/744
  • brm7sfv6ov.pages.dev/268
  • brm7sfv6ov.pages.dev/708
  • brm7sfv6ov.pages.dev/91
  • brm7sfv6ov.pages.dev/363
  • brm7sfv6ov.pages.dev/784
  • brm7sfv6ov.pages.dev/335
  • brm7sfv6ov.pages.dev/549
  • brm7sfv6ov.pages.dev/137
  • brm7sfv6ov.pages.dev/35
  • sebuah partikel dan foton memiliki energi yang sama apabila